

Foil collection

CATALOGUE

Summary

3

01	What's new?	006 007 008 009
02	Wingfoil	012 020 028 038 058
03	Surf foil - SUP foil	056
04	Hydrofoils	070 082 108 114 116 118 122

Jam Monobloc tail 200 XXS pumping Rock Sup Downwind pro Carbon Rock Sup Downwind pro

Wing technologies Wings Wingfoil boards technologies Wingfoil boards Surf foil - SUP foil boards

Surf foil - SUP foil boards

Hydrofoil technologies Hydrofoils Stabs Monobloc tails Fuselages Masts & spare parts Staps - Kitefoil - Wingfoil - Surfoil

As a market leader, our duty is to push the sport to new heights and please the regular users while innovating for the newcomers. The 2023 Foil Collection reflects that mission more than ever.

reference on the downwind scene.

some new pumping world records!

Another fun project was developing the RIB, which stands for "Rigid Inflatable Board". This new inflatable Dropstitch structure inflates around your small board, adding 40l of volume. It is light, packable, affordable, and goes unnoticed once up in the air. Looking for a one-board-quiver? A handy option to travel with a lightwind set-up? An option for your loved one to try winging without buying or renting a big board? You got it!

After releasing the most anticipated wing/foil spring collection, you would think that we would have taken a short rest. But that's not really who we are, is it?

Cheers!

5

We believe downwinding will be a key part of our sports and will probably be the sport that any customer looks up to, even if they do not practice yet. Our new ROCKET SUP DW PRO board is more than just a DW board; it's also the best option to have fun in small, non-breaking waves, oar to take-off and wing foil in extremely light conditions. That's a board you want in your quiver. With the most complete range (15 sizes) and refined shapes on the market, F-ONE aims at becoming the

While some are looking to go further offshore, others are happy with some flatwater fun. Developed to provide the best possible effort-to-glide ratio, the JAM is our new pumping foil. Dockstarts, flatwater starts, even small surf, the JAM – like its name implies - is made to have fun playing around with your mates. Be ready for

Julien SALLES

Pumping

With only just a few pumps, you'll be out of the water and gliding along at speed in no time with the JAM. Even if you stop pumping for a few seconds, it keeps gliding. In addition to the distinct design and profile, its rounded winglets reduce the induced drag even further and bring even more efficiency and performance.

Successfully combining early take-off abilities with good speed, the JAM delivers a smooth and precise ride, whether it's dock-starting or pump foiling in flat waters. Its high aspect ratio and extreme efficiency at low speeds also make it ideal for wing foiling and downwinding in marginal conditions. The JAM can also gain speed if necessary, allowing the rider to go faster, use it in lightwind winging conditions, and even ride small waves with ease.

Built using the Monobloc structure with pre-preg carbon, this foil is both very light and strong. This setup brings improved load transmission and better stiffness throughout the different parts for maximum control. The High Modulus Carbon fiber layup leads to even more rigidity and stability that will propel you to incredible performances in each session. The TITAN connection allows to plug in either an aluminum or carbon mast.

The JAM caters to all levels of foilers, whether it's beginners looking to get into pump foil, or more advanced riders wanting an efficient foil that will deliver in these disciplines and minimal conditions. Grab your group of friends and enjoy a jam session anytime, anywhere, with this new foil.

The 200 XXS PUMPING offers exceptional pumping abilities and a fantastic glide.

The Monobloc construction improves stiffness and reduces turbulence by eliminating connections and providing a more streamlined design. This premium connection will make any foil more playful, stable, and faster.

Made for dockstarts and endless pumping sessions

Monobloc construction for better stiffness and reduced turbulence

The Monobloc also removes two screws: you'll be on the water in no time!

The High Modulus Carbon fiber layup used for this Monobloc Tail leads to even more rigidity and dependability that will propel you to incredible performances in each session.

ROCKET SUP DOWNWIND PRO CARBON

Downwind

The ROCKET SUP DW PRO CARBON was designed to minimize drag and to promote early and efficient takeoffs in any conditions, whether it's flat waters or big open ocean bumps.

This board benefits from the best compromise between length, width and volume so as to remain accessible to the highest number of riders. Its long and narrow shape brings fantastic glide and high speed for paddle starts, while its boxy rails lead to great stability.

With the ROCKET SUP DW PRO CARBON, paddle efficiently and get onto foil easily and unbelievably fast all while benefitting from great stability. Volume is distributed to keep the rider's paddling position very close to the flying position and to minimize changes in the feet and stance. The balance between the front and back leg is excellent, allowing you to put just the right amount of power on the front leg before and during the take-off phase without the board ever nose diving.

The nose is streamlined and keeps enough volume and buoyancy for aggressive paddling and take-off, further helping in getting some momentum for easy starts when in the bumps. The tail is pinched in to improve water flow and reduce the drag. The lower tail volume also helps rocking and pumping the board for take-off.

The rails have been optimized for more comfort during take-offs and in the air. The bevel on the lower rail makes the board easier to handle during touchdowns and reduces friction at speed. The hard chines of the bevel improve water separation, thus helping during take-off and reducing deceleration on touchdowns. A third chine at the back provides extra stability and improves water separation at the tail as well. The ROCKET SUP DW PRO was designed to minimize drag and to promote early and efficient take-offs in any conditions, whether it's flat waters or big open ocean bumps.

This board benefits from the best compromise between length, width and volume so as to remain accessible to the highest number of riders. Its long and narrow shape brings fantastic glide and high speed for paddle starts, while its boxy rails lead to great stability.

With the ROCKET SUP DW PRO, paddle efficiently and get onto foil easily and unbelievably fast all while benefitting from great stability. Volume is distributed to keep the rider's paddling position very close to the flying position and to minimize changes in the feet and stance. The balance between the front and back leg is excellent, allowing you to put just the right amount of power on the

ROCKET SUP DOWNWIND PRO

Downwind

front leg before and during the take-off phase without the board ever nose diving.

The nose is streamlined and keeps enough volume and buoyancy for aggressive paddling and take-off, further helping in getting some momentum for easy starts when in the bumps. The tail is pinched in to improve water flow and reduce the drag. The lower tail volume also helps rocking and pumping the board for take-off. T

he rails have been optimized for more comfort during take-offs and in the air. The bevel on the lower rail makes the board easier to handle during touchdowns and reduces friction at speed. The hard chines of the bevel improve water separation, thus helping during take-off and reducing deceleration on touchdowns. A third chine at the back provides extra stability and improves water separation at the tail as well.

Wing foil

Wing technologies Wings Wingfoil boards technologie Wingfoil boards

.

Sail Engineering

We have been designing kites since 1998 and wings since 2019. Over the years, we have learned that design and fabrics choice are only one step to building a disturbance-free kite or wing. The key is to analyze and understand load tensions to better control our design and its behavior while flying. That is done through Sail Engineering. All our newly released kites benefited from this comprehensive research, and we have now applied to our entire wings range. Our R&D team focused on a few main points: the warp tension line, designing the new radial cut, new and original Staggered seams, and fabric weight management in each area of the wing. These also guarantee a profile as smooth as ever for even more efficiency, stability, and sharper performances.

Featured in

Strike V.3 Strike V.3 CWC Swing V.3

Warp tension line

Woven fabrics feature a longitudinal 0° yarn (Warp), and a transversal 90° yarn (Weft). Therefore, a fabric has great strength capacities if you apply tension at 0° or 90° along the yarns. But it will deform and stretch when tension is applied at, let's say, 45°.

Staggered seams

As seams are significantly stiffer than the fabric they join, they tend to strain under loads and therefore deform the profile. The staggered seams break that line of tension by balancing the stiffness between seams and cloth, which helps distributing the load over a wider area and maintaining the original shape even under high loads.

Fabric weight management

Dacron

Our sails feature five different cloth weights, from 52 up to 178gr/m². Sail engineering allows us to control our shape and drive load tensions without using heavy fabrics or bulky designs, therefore we can reduce fabric's weight and use. It results in a lighter, optimized kite and wing.

Load control paneling / Radial cut

When engineering the load control paneling, we make sure that fabrics panels are warp/weft oriented, meaning that the load path runs through the yarns. Fabric and seams are then in the best position to receive tensions and maintain the original kite and wing shape.

Hitex

To meet the specific needs of the development of wings and to offer a high-performance and durable product without using inaccessible materials, F-ONE has developed HITEX, a new high tenacity polyester. Available in 158g, and exclusively for F-ONE in 178g, this new material is incredibly resistant to elongation and increases the wing's durability.

HITEX is an innovative, high tenacity polyester fiber with an enhanced high-quality weaving and coating that increases the fabrics' resistance. The 178g is a new weight and perfectly matches the needs of the wing's center strut and center of its leading edge. The lighter 158g is used in the leading edge tips.

Used throughout the inflatable structure of the wings and designed to handle the high pressures when inflating the wings, HITEX offers performance and resistance. Thanks to extensive Sail Engineering work, the R&D team has placed each weight of HITEX in different areas of the wing allowing absolute control of its shape session after session.

Nano canopy

This micro ripstop polyester 55g is used on the canopies of our SWING V3 and STRIKE CWC V3.

Wings are often left in the wind to flap (on the beach, in freefly). They are also very often wet, salty and sandy; all factors that weaken them. The canopy of a wing must therefore be very durable to keep its rigidity over time and to ensure the same performance level between the day of purchase and the end of its life.

It benefits from a NANO coating and a Plasma treatment process that brings an increased rigidity, resistance to elongation and tears, and durability.

Featured in

Strike V.3 Strike V.3 CWC Swing V.3

Featured in

15

Strike V.3 CWC Swing V.3

Technoforce

TEIJIN's TECHNOFORCE[™] is the most reliable high density polyester fabric. Its tear-stopping structure using thin and high tension yarn makes the fabric ultra-durable. It has a great proven track record of lightness and durability.

On top of offering our usual TECHNOFORCE 52g, we have developed this year a thicker TECHNOFORCE in 66g to place on the trailing edge of some of our kites and wings where tensions are important and resistance essential.

HIGH ENDURANCE COATING

HIGH TENACITY POLYESTER DOUBLE RIPSTOP

HT 80

The HT80 is a woven double ripstop high tenacity polyester that brings increased stability and allows a better control of the profile of the kite or the wing.

This material guarantees great resistance to elongation and tears, as well as increased durability overtime.

Featured in

Strike V.3

Featured in _____ Swing V.3

17

16

HIGH TENACITY POLYESTER DOUBLE RIPSTOP

HIGH ENDURANCE COATING

Triple strut

This patented Wing geometry with its two additional struts allows adding more surface into a given wingspan.

Compact Wing Concept (CWC)

The pending patent : Compact Wing Concept is an F-ONE innovation. This new design offers a compact shape, easy to handle and offers amazing light wind riding sensations without compromises.

19

21

77231-0801N

3.5	4.0	4.5	5.0	5.5
25-35	22-32	18-28	14 - 25	12-22

STRIKE V.3

Freeride - Freestyle - Surf

(Key points)

NEW

- $\boldsymbol{\cdot}$ Its revolutionary design brings unprecedented performance
- HITEX and TECHNOFORCE provide increased durability
- \cdot The perfect control of the profile and deformations guarantees a unique comfort while riding
- Legendary lightness and stability in freefly are maintained
- Perfectly balanced center of traction between your two arms leads to an intuitive ride

Adaptive & Precise inflation

We have recommended specific inflation pressures for the most efficient ride, and therefore the maximum pressures. But it is possible to ride with only 7PSI in the leading edge instead of 9 PSI in order to have a slightly softer feeling.

However, we recommend keeping 9 or 10 PSI in the central strut to keep the profile stable.

Freestyle	Surf			Freefly		Sp	beed	
Size (sqm)	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
Wind (knots)	35+	30+	28-38	25-35	22-32	18-28	14 - 25	12-22

A - Onyx / Mint

🗕 B - Flame / Onyx

🗕 C - Mint / Flame

77231-1001

SAIL ENGINEERING

STRIKE V.3 CWC

from the surface of the water

Lightwind

(Key points)

NEW

SAIL ENGINEERING

 Patented compact design provides maximum power with impressive maneuverability Smaller wingspan provides efficient pumping and maintains the wingtips away

Lightwind	Surf	Freefly		Speed
Size (sqm)	6.0	7.0	8.0	9.0
Wind (knots)	9 - 18	08-20	06 - 15	06-14

A - Mint / Onyx

B - Flame / Onyx

77231-1002N

SWING V.3

Freeride - Surf

(Key points)

- Its compact design improves freefly abilities; your only focus becomes your foil and the wave in front of you
- Its power allows you to ride underpowered and to use a smaller board for a unique feeling of freedom
- Its maneuverability and stability help you nail all yourmaneuvers like the jibe or the tack
- It offers an easy and controlled ride, without any big accelerations
 HITEX and NANO provide increased durability

SAIL ENGINEERING

HT80 CANOPY)

Freestyle	Surf		F	reefly		Sp	eed	
			_					
Size (sqm)	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
Wind (knots)	35+	30+	28-38	25-35	22-32	18-28	14 - 25	12-22

• A - Onyx / Flame

B - Flame / Mint

77231-0801N

Full bamboo construction

Bamboo fibers are highly resistant and really light. The FULL BAMBOO construction uses natural properties of bamboo veneers placed between fiberglass layers to create a strong, durable, light shell for the entire board (deck and bottom).

Double bamboo deck

An extra layer of bamboo (Double Bamboo Deck) is located in the stance area to make the deck even more resistant to local heel pressures and dings. This results in light, strong and responsive boards to enjoy session after session.

Featured in

Rocket wing Rocket wing S Rocket surf Rocket SUP

Featured in

Rocket wing Rocket wing S Rocket surf Rocket SUP

Air Shield Composite

The Air Shield Composite boards are constructed around a lightweight injected EPS core molded to our original shape. It is laminated with a composite made of high-strength glass fiber, epoxy resin and a shield made of a high-quality protective topsheetlayer. The topsheet is a tough and extremely reliable material also used in the construction of our twintips boards as well as in most skis and snowboards on the market. Thanks to their construction molded in one shot, the ASC boards are lightweight, responsive, and extremely durable.

HD Foam carbon composite

This construction with a CNC-shaped EPS foam core and a sandwich layup (high-density foam + glass and carbon fiber) allows the board to be lightweight and strong, as well as tougher to heel pressures and dings. The high-density foam brings an overall strength to the board.

This construction improves the weight/strength ratio of carbon foil boards which clearly feature among the lightest and best performing boards on the market.

Featured in

Rocket wing ASC

AIR SHIELD COMPOSITE

Featured in

31

Rocket wing carbon Rocket wing S carbon Rocket SUP Downwind PRO

Air Shield Composite process

Topsheets with graphics are included for deck and bottom.

and is ready to be sent.

BOXES ARE RECYCLED, BLEACH FREE AND SLIM FIT FOR LOW FOOTPRINT SHIPPING.

Beveled rails

Beveled rails on foil boards reduce the width of the hull compared to the deck. This reduces the friction when the board touches the water and helps with touchdowns.

They are small flat lateral sections in V shapes, which allows us to reduce the thickness of the rail in certain sections. They also reduce the planing surface of the board which therefore reduces drag. The combination of a wider deck and narrower hull allows the board to be stable in touchdowns and on the water, while getting a better angle into the turns and a faster take-off.

Dropstitch technology

The Dropstitch is an incredible technology originally developed to make inflatable rescue airplanes! Later on, it was used by inflatable boat and canoe manufacturers. It is composed of a vertical stitch in-between the deck and the hull that keeps them parallel and extremely rigid. This allows the boards to be inflated up to 21 PSI.

NOTE: Some boards may show a larger or smaller bulge on the hull around the inflation valve, or at the mast foot for the windsurf boards. This bulge is inherent to the Dropstitch technology used in the manufacturing process of your board and doesn't constitute a defect. It also does not affect in any way the behavior and reliability of your board.

Featured in

Rocket wing Rocket wing carbon Rocket wing - S Rocket wing - S carbon Rocket surf Rocket SUP Rocket SUP downwind PRO

Featured in

35

Rocket AIR RIB

4 - PT Foil mount

The 4-point foil mount is a waterproof box for inflatable boards, connecting the deck with the hull. It provides a rigid connection between your feet and the foil. The bolt spacing is our standard 160x90mm.

Waterproof box

Connected to the deck

4 x M6 – 15mm tapered head

A 4-pt foil mount adapter is also available for purchase.

Featured in

Rocket air

ROCKET WING

Freeride

Size (in)	Size (cm)	Volume (I)	Inserts
4'4 x 21"	132 x 53,5	401	Yes
4'8 x 22"	142 x 56	501	Yes
5'0 x 23"	152 x 58,5	601	Yes
5'3 x 25"	160 x 63,5	751	Yes
5'5 x 27"	165 x 68,5	881	Yes
5'10 x 28"	178 x 71	1051	-
6'0 x 30"	183 x 76	1201	-
6'4 x 32"	193 x 81,5	1401	-

Full bamboo construction (4'4 / 4'8 / 5'0 / 5'3 / 5'5) Double bamboo deck

Accessibility Freeride Freestyle Carving

ROCKET WING CARBON

Freeride - freestyle

Size (in)	Size (cm)	Volume (I)	Inserts
4'4 x 21" 4'8 x 22" 5'0 x 23"	132 x 53,5 142 x 56 152 x 58,5	401 501 601	Yes Yes Yes

HD Foam carbon composite

Accessibility

Freeride

Freestyle

Carving

77228-0502

Surf - freeride

	Size (in)	Size (cm)	Volume (I)	Inserts
	3'6 x 175"	1125x445	201	Yes
	3'10 x 18.5"	118,5 x 47	24 L	Yes
	4'4 x 19.5"	132 x 49,5	32 L	Yes
	4'6 x 20"	137 x 51	36 L	Yes
	4'8 x 21"	142 x 53,5	42 L	Yes
	4'10 x 21.5"	147 x 54,5	48 L	Yes
	5'0 x 22.5"	152 x 57	54 L	Yes
new	5'2 x 24.25"	154 x 61	701	Yes
new	5'4 x 26"	159 x 66	801	Yes

Full bamboo construction Double bamboo deck

Accessibility

Freeride

Freestyle

Carving

77228-0501

77228-0601

ROCKET WING - S CARBON

Surf - freeride - freestyle

Size (in)	Size (cm)	Volume (I)	Inserts	
4'4 x 19.5"	132 x 49,5	32L	Yes	
4'6 x 20"	137 x 51	36 L	Yes	
4'8 x 21"	142 x 53,5	42 L	Yes	
4'10 x 21.5" 5'0 x 22.5"	147 x 54,5 152 x 57	48 L 54 L	Yes Yes	

HD Foam carbon composite

Accessibility

Freeride

Freestyle

Carving

ROCKET WING ASC

Freeride

Size (in)	Size (cm)	Volume (I)	Inserts
5'0 x 23"	152.5 x	60 L	Yes
5'3 x 25"	58.5	75 L	Yes
5'5 x 27"	160 x 63.5	90 L	Yes
5'10 x	165 x 68.5	110 L	-
29"	178 x 73.5	130 L	-
6'2 x 31"	188 x 79		

Air shield composite

Full pad

Twin Tracks

Strap inserts for sizes below 5'5 (included)

4x T-nut 4x M6-14mm TH screws

Accessibility	Freeride
Freestyle	Carving

5'0	77218-1105	5'10	77208-1101
5'3	77218-1104	6'2	77218-1100
5'5	77218-1103		

ROCKET AIR

Surf foil - wing foil - SUP foil - wind foil

Size (in)	Size (cm)	Volume (I)	Poids (kg)	Surf foil	Wing foil	Wind foil
4'10 x 22	152 x 56	75 L	3.9	Yes	Yes	-
5'4 x 25	163 x 63	90 L	4.9	Yes	Yes	-
5'10 x 29	178 x 73	125 L	5.7	-	Yes	-
6'6 x 30	193 x 76	140 L	6.2	-	Yes	-
7'2x30	218 x 76	168 L	7.4	-	Yes	Yes
7'6 x 31	227x78	185 L	8.3	-	Yes	Yes
7'11x34	242 x 85	190 L	8.6	-	Yes	Yes
Full pad for a	III sizes					
From 5'4 to 6	5'2:	4-pt Insert		_		
For 7'2 only	7.4 4	4-pt Insert + 2	x US box + 3x Soft	Fins	1	
From 7 6 to a	(11:	4-punsert+2	x US DOX + 3X SOIL	FINS + M8 masting	sert	
From 5'4 to f	86.	4x M6 - 15mr	n tanered head scr	ews		
From 7'2 to 7	7'11:	4x M6 - 15mr	n tapered head scr	ews + 2x FINS Ma	ngo with screws	&nuts
Accessibility	1	Freeride		Freestvle	Car	vina

77218-1001

41

ROCKET WING

Freeride

(Key points)

- Intuitive and performant
 Optimized volume distribution with a new slight concave deck
- Extra durable and light bamboo construction
 Beveled rails and double concave for effortless take offs and touchdown recoveries

Accessibility	Fr	reeride		Freestyle		Carv	ing	
						_		-
Dimensions (in) Size (cm)	6'4 x 32"	6'0 x 30" 183 x 76	5'10 x 28" 178 x 71	5'5 x 27"	5'3 x 25"	5'0 x 23"	4'8 x 22"	4'4 x 21"
Volume (I) Weight (kg) Strap inserts	140 7.9 -	120 7.4 -	105 7.2 -	88 6.6 Yes	75 6.1 Yes	60 5.5 Yes	50 4.9 Yes	40 4.4 Yes

ROCKET WING CARBON

Freeride - Freestyle

(Key points)

- Stiff, highly responsive, and maneuverable
 Carbon construction adapted to the freestyle tricks constraints
 Optimized volume distribution with new slight concave deck
 Beveled rails and double concave for effortless take offs and touchdown recoveries.

Accessibility	Freeride	Freestyle	Carving
Dimensions (in)	5'0 x 23"	4'8 x 22"	4'4 x 21"
Size (cm)	152 x58,5	142 x 56	132 x53,5
Volume (I)	60	50	40
Weight (kg)	4.8	4.4	3.9
Strap inserts	Yes	Yes	Yes

Surf - Freeride

(Key points)

- Deep concave deck to lower center of gravity for excellent board control
 Domed front deck to add volume for easy water starts
 Great for Carving and Pumping
 Compact outline on tail and nose for fantastic maneuverability

Accessibility		Freeride		Free	Freestyle			Carving		
Dimensions (in)	5'4 x 26"	5'2 x 24"	5'0 x 22.5"	4'10 x 21.5"	4'8 x 21"	4'6 x 20"	4'4 x 19.5"	3'10 x 18.5"	3'6 x 17.5"	
Size (cm)	159,9 x 66	154,4 x 61,6	152 x 57	147 x 54,5	142 x 53,5	137 x 51	132 x 49,5	118,5 x 47	112,5 x 44,	
Volume (I)	80	70	54	48	42	36	32	24	20	
Weight (kg)	6.6	6.1	5.1	4.8	4.5	4.2	4.0	3.7	3.5	
Strap inserts	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

new new

ROCKET WING - S CARBON

Surf - Freeride

(Key points)

- Wing foil freestyle and surf weapon
 Carbon construction adapted to the freestyle tricks constraints
 Deep concave deck to lower center of gravity for excellent board control
 Domed front deck to add volume for easy water starts
 Outline with narrow tail and nose for fantastic maneuverability

Accessibility	Freeride		Freestyle	Carv	ing
Dimensions (in)	5'0 x 22.5"	4'10 x 21.5"	4'8 x 21"	4'6 x 20"	4'4 x 19.5"
Size (cm)	152 x 57	147 x 54,5	142 x 53,5	137 x 51	132 x 49,5
Volume (I)	54	48	42	36	32
Weight (kg)	4.5	4.4	4.1	3.8	3.7
Strap inserts	Yes	Yes	Yes	Yes	Yes

	And Street	
and the state		a second second
and the second sec		
and the second		4
	1 Kan	the second
States of the second second	"Dee	
and the second second		ELMON
Cont Stor		1
COLOR STORES	6. C	
		V DZ
14 C 20	A AND AND	3771 232 2000 2000
000 000		
Contraction of the second		
A		BA - Constanting
20432		A DECK
1 - etcal		Ő
\$3		
	16.5. 360	Mand.
and a	California	Sec. All
2 2 2 1 3		
States 1		
- P		
A COL		
6000	A STATISTICS	
	•	
	and the second second	
	and the second second	North and

ROCKET WING ASC

Freeride

BEVELED RAIL

Key points

- Stable and forgiving
 Light weight, responsive and extremely durable thanks to its ASC construction
 Optimized rocker line for the most intuitive ride

Accessibility	Freeride		Freestyle	Carvi	ing
Dimensions (in)	6'2×31"	5'10 x 29"	5'5 x 27"	5'3 x 25"	5'0 x 23"
Size (cm)	188 x 79	178 x 73.5	165 x 68.5	160 x 63.5	132 x 49,5
Volume (I)	130	110	90	75	60
Weight (kg)	9.4	8.3	7.6	6.8	6.4
Strap inserts	-	-	Yes	Yes	Yes
5'0	77218-1105		5'10	77208-1101	
5'3	77218-1104		6'2	77218-1100	
5'5	77218-1103				

ROCKET AIR

Surf foil - wing foil - SUP foil - wind foil

(Key points)

- Easy to store and carry
 Balanced and light for flying
 Almost indestructible with its superior and extra stiff
- Dropstitch material

Accessibility	Freeride		Freest	yle	Carv	ing	
Dimensions (in)	7'11 x 34"	7'6 x 31"	7'2 x 30"	6'6 x 30"	5'10 x 29"	5'4 x 25"	
Size (cm)	242 x 85	227x78	218 x 76	193 x 76	178 x 73	163 x 63	
Volume (I)	190	185	168	140	125	90	
Weight (kg)	8.6	8.3	7.4	6.2	5.7	4.9	
Surf foil	-	-	-	-	-	YES	
Wing foil	YES	YES	YES	YES	YES	YES	
SUP foil	YES	YES	YES	YES	YES	YES	
Wind foil	YES	YES	-	-	-	-	

Box & inserts

4-pt Insert 4-pt Insert + 2x US box + 3x Soft Fins 4-pt Insert + 2x US box + 3x Soft Fins + M8 mast insert From 4'10 to 6'2: For 7'2 only : From 7'6 to 7'11:

From 4'10 to 6'6: From 7'2 to 7'11:

4x M6 - 15mm tapered head screws 4x M6 - 15mm tapered head screws + 2x FINS Mango with screws & nuts

Surf foil - SUP foil

Board range Boards

ROCKET SUP DOWNWIND PRO CARBON

Downwind

HD Foam carbon composite Twin tracks

Delivered with boardbag

18" width						238-0803
Dimensions (in)	6'6 x 18"	6'9 x 18"	7'0 x 18"	7'4 x 18.5"	7'8 x 18.5"	8'0 x 18.75"
Volume (I)	80,5	83,5	86	95	100	110
Weight (kg)	4.3	4.5	4.7	5.1	5.3	5.6

19" width					77238-0802
Dimensions (in)	6'2 x 19"	6'6 x 19"	6'10 x 19"	7'0 x 19.5"	7'4 x 19.75"
Volume (I)	86	91,5	96	104	110
Weight (kg)	4.5	4.7	4.9	5.3	5.6

20" width				77238-0801
Dimensions (in)	6'7 x 20"	7'0 x 20.5"	7'5 x 21"	7'10 x 21.5"
/olume (I)	98	109	120	130
Weight (kg)	5.5	5.9	6.4	6.9

Downwind

Full Bamboo Construction

Twin tracks						
18" width					77	238-0805
Dimensions (in) Volume (I) Weight (kg)	6'6 x 18" 80,5 TBC	6'9 x 18" 83,5 TBC	7'0 x 18" 86 TBC	7'4 x 18.5" 95 TBC	7'8 x 18.5" 100 TBC	8'0 x 18.75" 110 TBC
19" width					77	238-0804
Dimensions (in) Volume (I) Weight (kg)	6'2 x 19" 86 TBC	6'6 x 19" 91,5 TBC	6'10 x 19 96 TBC	9" 7'0 104 TBC	x 19.5" C	7'4 x 19.5" 110 TBC
20" width					77	238-0800
Dimensions (in) Volume (I) Weight (kg)	6'7 x 20" 98 5.5	7'0 x 2 109 5.9	20.5"	7'5 x 21" 120 6.4	7'10 130 6.9) x 21.5"

Twin tracks						
18" width					77	238-0805
Dimensions (in) Volume (I) Weight (kg)	6'6 x 18" 80,5 TBC	6'9 x 18" 83,5 TBC	7'0 x 18" 86 TBC	7'4 x 18.5" 95 TBC	7'8 x 18.5" 100 TBC	8'0 x 18.75" 110 TBC
19" width					77	238-0804
Dimensions (in) Volume (I) Weight (kg)	6'2 x 19" 86 TBC	6'6 x 19" 91,5 TBC	6'10 x 19 96 TBC	9" 7'0 104 TB0	x 19.5" C	7'4 x 19.5" 110 TBC
20" width					77	238-0800
Dimensions (in) Volume (I) Weight (kg)	6'7 x 20" 98 5.5	7'0 x 2 109 5.9	20.5"	7'5 x 21" 120 6.4	7'10 130 6.9) x 21.5"

Twin tracks						
18" width					77	238-0805
Dimensions (in) Volume (I) Weight (kg)	6'6 x 18" 80,5 TBC	6'9 x 18" 83,5 TBC	7'0 x 18" 86 TBC	7'4 x 18.5" 95 TBC	7'8 x 18.5" 100 TBC	8'0 x 18.75" 110 TBC
19" width					77	238-0804
Dimensions (in) Volume (I) Weight (kg)	6'2 x 19" 86 TBC	6'6 x 19" 91,5 TBC	6'10 x 19 96 TBC	" 7'0∍ 104 ⊤BC	< 19.5"	74 x 19.5" 110 TBC
20" width					77	238-0800
Dimensions (in) Volume (I) Weight (kg)	6'7 x 20" 98 5.5	7'0 x 2 109 5.9	20.5"	7'5 x 21" 120 6.4	7'10 130 6.9	x 21.5"

ROCKET SUP SUP foil

Size (in)	Size (cm)	Volume (I)	Inserts	
5'10 x 23.5" 6'2 x 24.8" 6'4 x 26" 6'6 x 27.8"	178 x 59,7 188 x 63 193 x 66 198 x 70,6	90 L 105 L 120 L 140 L	Yes Yes -	

ROCKET SURF

Surf foil

Size (cm)	Volume (I)	Inserts	
129 x 48,2	28 L	Yes	
138,5 x 49,5	33 L	Yes	
153,5 x 50,8	38 L	-	
167 x 52	43 L	-	
	Size (cm) 129 x 48,2 138,5 x 49,5 153,5 x 50,8 167 x 52	Size (cm) Volume (l) 129 x 48,2 28 L 138,5 x 49,5 33 L 153,5 x 50,8 38 L 167 x 52 43 L	Size (cm) Volume (l) Inserts 129 x 48,2 28 L Yes 138,5 x 49,5 33 L Yes 153,5 x 50,8 38 L - 167 x 52 43 L -

Full bamboo construction Double bamboo deck

Take off

Carving

Reactivity

Pumping

77228-0701

Full bamboo construction Double bamboo deck

Take off

Carving

Reactivity

Pumping

ROCKET SUP DOWNWIND PRO CARBON

Downwind

NEW

(Key points)

- Incredibly efficient and fast take-offs
 Superb stability at all times
 Immense glide and speed
 Controlled front/back leg balance
 Control and maneuverability even at high speeds

Delivered with boardbag

BEVELED

61

18" width					77238-0803		
Dimensions (in)	6'6 x 18	6'9 x 18	7'0 x 18	7'4 x 18.5	7'8 x 18.5	8'0 x 18.75	
Volume (I)	80,5	83,5	86	95	100	110	
Weight (kg)	4.3	4.5	4.7	5.1	5.3	5.6	

19" width					77238-0802
Dimensions (in)	6'2 x 19	6'6 x 19	6'10 x 19	7'0 x 19.5	7'4 x 19.75
/olume (I)	86	91,5	96	104	110
Weight (kg)	4.5	4.7	4.9	5.3	5.6

20" width				77238-0801
Dimensions (in)	6'7 x 20	7'0 x 20.5	7'5 x 21	7'10 x 21.5
/olume (I)	98	109	120	130
Neight (kg)	5.5	5.9	6.4	6.9

ROCKET SUP DOWNWIND PRO

Downwind

(Key points)

- Incredibly efficient and fast take-offs
 Superb stability at all times
 Immense glide and speed
 Controlled front/back leg balance
 Control and maneuverability even at high speeds

63

18" width

						238-0805
Dimensions (in)	6'6 x 18"	6'9 x 18"	7'0 x 18"	7'4 x 18.5"	7'8 x 18.5"	8'0 x 18.75"
Volume (I)	80,5	83,5	86	95	100	110
Weight (kg)	TBC	TBC	TBC	TBC	TBC	TBC

19" width					77238-0804
Dimensions (in)	6'2 x 19"	6'6 x 19"	6'10 x 19"	7'0 x 19.5"	7'4 x 19.5"
Volume (I)	86	91,5	96	104	110
Weight (kg)	TBC	TBC	TBC	TBC	TBC

			77238-0800
6'7 x 20"	7'0 x 20.5"	7'5 x 21"	7'10 x 21.5"
98	109	120	130
5.5	5.9	6.4	6.9
	6'7 x 20" 98 5.5	6'7 x 20" 7'0 x 20.5" 98 109 5.5 5.9	6'7 x 20"7'0 x 20.5"7'5 x 21"981091205.55.96.4

ROCKET SUP

SUP foil

(Key points)

- Stable and accessible
 Impressive glide downwind and surf
 Intuitive control and maneuverability
 Stiff and light construction

Take off	Reactivity	Carving		Pumping	
Dimensions (in)	6'6 x 27.8"	6'4×26"	6'2 x 24.8"	5'10 x 23.5"	
Size (cm)	198 x 70,6	193 x 66	188 x 63	178 x 59,7	
Volume (I)	140	120	105	90	
Weight (kg)	8.1	7.5	6.7	6.1	
Strap inserts	-	-	-	-	

ROCKET SURF

Surf foil

(Key points)

- Extremely responsive
 Complete control with pumping and carving
 Easy take-off and high-performance during flight
 Stiff and light construction

Take off	Reactivity	Carving	g	Pumping	
Dimensions (in)	5'6 x 20.5"	5'0 x 20"	4'6 x 19.5"	4'2 x 19"	
Size (cm)	167 x 52	153,5 x 50,8	138,5 x 49,5	129 x 48,2	
Volume (I)	43	38	33	28	
Weight (kg)	4.1	3.9	4.1	3.8	
Strap inserts	-	-	YES	YES	

77228-0401

BEVELED RAIL

Hydrofoils

Hydrofoil technologies Wing & surf hydrofoils Stabs & fuselages Masts & spare parts

120

230

5

200

PrePreg technology

Pre-preg makes the foils stiffer and stronger. With pre-preg fabrics, the carbon fiber is directly impregnated with epoxy resin by its manufacturer. This guarantees a perfect ratio between epoxy and carbon and represents the highest quality process. It is then cured at high temperature, bringing strength and durability.

Quality control is much better and so is the working environment for the people building our foils. Pre-preg fabrics offer the lightest weight with the best mechanical properties of carbon fiber.

HM carbon construction

The High Modulus Carbon fiber layup is 1.5x stiffer than the regular carbon fiber used in other constructions. The percentage of high modulus fiber has been carefully adjusted to obtain the best stiffness in both bending and torsion while keeping enough comfort for any kind of practice.

Featured in

JAM SK8 Eagle HM carbon Seven seas carbon Phantom s carbon Monobloc tails Phantom carbon Escape HM carbon Gravity carbon HM Carbon Mast 14 Carbon Mast 16

PRE PREG TECHNOLOGY Featured in

71

JAM SK8 Escape HM carbon Eagle HM carbon HM carbon mast 14 Stab c250 surf Stab c250 fence Stab DW210 Monobloc tails

STIFFNESS COMPARISON

Reduced bending and torsion

Tail monobloc structure

The monobloc construction improves stiffness and reduces turbulence by eliminating connections and providing a more streamlined design. This premium connection will make any foil more playful, more stable, and faster. The monobloc also removes two screws; you'll be on the water faster!

Incredibly stiff and provide absolute control at all times providing less drag, more speed and manoeuvrability.

Featured in

Monobloc tails

TAIL MONOBLOC STRUCTURE

Monobloc structure

Having a stiff and solid assembly between all the parts of the foil is key to making it perform at its best as well as easy to handle.

The connection of the front wing with the fuselage is highly stressed and loaded, so it is one of the critical areas of the assembly in terms of structures.

The Monobloc wings are molded together with the fuselage in one shot, thereby removing the connection and the chances for unwanted and parasitic movements.

The structural fibers of the fuselage are spread into the wing to achieve the smoothest and lightest connection. It is also incredibly stiff and provides absolute control at all times, with the foil responding perfectly to all of the riders' input.

When the overall dimensions are too large for convenient transportation, a connection is set into the fuselage, behind the mast where the loads are smaller.

Featured in

JAM SK8 Eagle HM carbon Seven seas carbon Phantom S carbon Phantom carbon Mirage carbon Gravity carbon

Front wing & fuselage are molded together in one piece.

Incredibly stiff and provide absolute control at all times.

Full monobloc structure

The front wing, fuselage, and stabilizer are molded together, reducing hydrodynamic drag and offering a stiff and solid foil.

Having a stiff and solid assembly between all the parts of the foil is key to making it perform at its best as well as easy to handle.

The connection of the front wing with the fuselage is highly stressed and loaded, so it is one of the critical areas of the assembly in terms of structures. The Full Monobloc wings are molded together with the fuselage and stab, thereby removing the connection and the chances for unwanted and parasitic movements.

They are incredibly stiff and provide absolute control at all times, with the foil responding perfectly to all of the riders' input.

Spine technology

The SPINE internal structure of our carbon masts is made of a carbon shear web and high-density structural foam. The carbon shear web links the two sides of the mast. This internal stringer allows to obtain a better rigidity in flexion and torsion.v

Featured in

Escape HM carbon

Featured in

HM carbon mast 14 Carbon Mast 16

Fusion link

The Fusion Link enables the perfect connection between the fuselage and the front wing using a large solid plate at the front of the fuselage. It is screwed to the front wing using 4 x M6 – 14 mm screws, resulting in a connection geometry that ensures a very solid and stiff assembly.

v

Featured in

Phantom FCT Gravity FCT

Foil compression technology

The Foil Compression Technology is a F-ONE innovation offering impressive mechanical properties, making it particularly suited for foil subjected to high stressed and bending loads.

Our FCT front wings are built in fiberglass around a high-density foam core. The wing is covered by our thin and strong shield skin. This technology offers one of the most accessible foil setups on the market.

3 SHIELD SKIN

77

Phantom FCT Featured in Gravity FCT

Aluminium 6063 & 6061

Produced from an extrusion process, our aluminum profiles make the most of this homogeneous material to provide perfect stiffness both in torsion and bending. All areas in contact with other metals or carbon parts are duly isolated against galvanic reactions.

Machining blocks of aluminum 6061 guarantees the maximum accuracy and preserves the mechanical properties of this higher grade of aluminum. All parts are fully anodized and stainless-steel inserts are fitted with insulating gel when fastening is required.

Resin transfer molding

RTM Technology stands for Resin Transfer Molding. This process uses a closed mold to produce accurate composite parts.

The resin is injected in the mold after it is closed, with the dry fiber having been placed inside beforehand. The closed mold injection allows for great shape accuracy. In addition, the epoxy resin used makes the fins or stabs stronger and more responsive, thus providing a sharper feel on the water.

Featured in

Alu mast
 Alu fuselage
 Alu spare parts

Featured in R.275

79

Titan connexion

The TITAN connection enables a very stiff and direct connection between the fuselage and the mast. Locking efficiently any movement in all directions, its format is compact which is hydrodynamically efficient and very easy to use, assemble, and disassemble.

V

Featured in

- JAM SK8 Eagle HM carbon Seven Seas carbon Phantom S carbon Phantom carbon Escape HM carbon Gravity

Dockstart

SK8

Surfing - Carving

Glide

Pumping

Low end

Speed

Maneuverability

550 - 650 - 750160 XXXS850180 XXXS950 - 1050200 XXS

Dockstart	
Maneuverability	
Pumping	
Low end	
Speed	

200 XXS pumping

Available January 2024

550	77237-0151
650	77237-0152
750	77237-0153

EAGLE HM CARBON Downwind - Speed

NEW SIZE

	Area (cm²)	Span (cm)	Aspect ratio	KG
new	690	82	9.7	0.92
	790	86.5	9.5	1.10
	890	92.5	9.6	1.23
	990	97	9.5	1.31
	1090	102	9.5	1.48
new	1290	110.5	9.5	1.58

790: 890-990-1090-1290:	Fuselage carbon XXXS Fuselage carbon XXS
Recommended stab	
790-890-990-1090-1290:	Stab DW 210 HM
Recommended monobloc tail	
690: XXXS 190 DW	
Glide	
Maneuverability	
Pumping	
Low end	

690	77227-0130
790	77227-0131
890	77227-0132
990	77227-0133

83

109077227-0134129077227-0135

SEVEN SEAS CARBON

Downwind - Glide

Span (cm)	Aspect ratio	KG
86.5	7.5	1.35
95	7.6	1.44
103.5	7.5	1.61
	Span (cm) 86.5 95 103.5	Span (cm) Aspect ratio 86.5 7.5 95 7.6 103.5 7.5

Recommended fuselage	
1000 - 1200 - 1400	Fuselage carbon XXXS
Recommended stab	
1000-1200-1400:	Stab C250 fence
Glide	
Maneuverability	
Pumping	
Low end	
Speed	

1000 1200 1400

PHANTOM S CARBON

Surf - Planing - Freestyle

Surf - Planing - Freestyle - Freeride

GRAVITY CARBON

Planing - Freeride

Area (cm²)	Span (cm)	Aspect ratio	KG
740	69.5	6.5	0.8
840	74	6.5	1
940	78	6.5	1

Area (cm²)	Span (cm)	Aspect ratio	KG
980	78	6.2	1.20
1080	80	5.9	1.20
1280	87	5.9	1.37
1480	96	6.2	1.62
1780	107	6.4	1.9

Recommended fuselage	
740: 840-940:	Fuselage carbon XXXS Fuselage carbon XXS
Recommended stab	
Stab C250 fence	
Glide	
Maneuverability	
Pumping	
Low end	
Speed	

740	77207-0105
840	77217-0104
940	77217-0103

Recommended fuselage	
980 - 1080 : 1280 : 1480 - 1780 :	Fuselage carbon XXS Fuselage carbon X-short Fuselage carbon short
Recommended stab	
980 - 1080 : 1280-1480-1780 :	StabC250 fence Stab C275 surf
Glide	
Maneuverability	
Pumping	
Low end	
Speed	

980	77227-0110
1080	77207-0106
1280	77207-0107
1480	77207-0108
1780	77207-0109

Area (cm²)	Span (cm)	Aspect ratio	KG	_
1800	90	4.6	1.95	new
2200	110	5.5	2.15	

Recommended fuselage	
Fuselage Carbon Long	
Recommended stab	
Stab C275 surf	
Glide	
Maneuverability	
Pumping	
Low end	
Speed	

85

77207-0113 77207-0114

ESCAPE HM CARBON

Speed - Carving

NEW SIZE

Area (cm²)	Span (cm)	Aspect ratio	KG
430	58	7.8	0.77
530	58	6.3	1.00
630	64	6.5	1.06

Recomme	ended fuselage	
-		
Recomme	ended stab	
-		
Glide		
Maneuver	ability	
Pumping		
Low end		
Speed		
Plane		
430 530	77237-0800 77227-0801	Available April 2024

77227-0802

630

GRAVITY FCT

Planing - Freeride

PHANTOM FCT Surf - Planing - Freeride

Area (cm²)	Span (cm)	Aspect ratio	KG
1800	95	5.0	1.7
2200	110	5.5	2.2

Area (cm²)	Span (cm)	Aspect ratio	KG
1280	87	5.9	1.2
1480	96	6.2	1.4
1680	104	6.4	1.6

Recommended fuselage

Fuselage Aluminium 74 surf

Recommended stab

Stab R275 surf $275 \, \text{cm}^2$

Maneuverability

Glide

Pumping

Speed

-

Low end

Recommended fuselage
Fuselage Aluminium 74 surf
Recommended stab
Stab IC6 300 cm ²
Glide
Maneuverability
Pumping
Low end
Speed

1800	
2200	

77207-0820	
77227-0802	

1280	77217-0122
1480	77217-0123
1680	77217-0125

JAM Dockstart

NEW

(Key points)

ASPECT RATIO: 10.5

- Dedicated to dockstart and pump foiling
 Infinite glide and outstanding efficiency
 Easy and fast take-offs

- Effective at low speeds just as much as for accelerations

Dockstart	Maneuverability	Pumping	Low end	Speed	
Area (cm²)	1600	1900			
Span (cm)	128	141			
Aspect ratio	10.2	10.5			
Weight (kg)	2.03	2.42			
Decommonded ma	unable e teil				

Recommended monobloc tail

200 XXS pumping

77247-0160 Available January 2024

1900

77247-0161

HIGH MODULUS CARBON

MONOBLOC STRUCTURE

TITAN CONNECTION

PRE PREG TECHNOLOGY

 $\overline{\neg r}$

 \mathcal{N}

1600

(Key points)

ASPECT RATIO 8.0

- Its outline makes it easy to turn and push hard during fast and controlled carves
- The subtle balance of the lobe between maneuverability and glide allows to surf freely while maintaining efficient pumping
- The wingtips' design is made to hit the foam and breach the wingtip without turbulence or cavitation
- Its unique speed makes it a perfect foil for surfing from offshore swells to the shorebreak with a wing
- Our monobloc construction guarantees rigidity, durability, and extraordinary glide

Glide	Maneuverability	Pu	mping	Low end	Sp	beed
Area (cm²) Span (cm) Aspect ratio Weight (kg)	550 67 8.2 0.78	650 72.5 8.1 0.89	750 77.5 8.0 1.03	850 82.5 8.0 1.09	950 87 8.0 1.20	1050 91.5 8.0 1.35
Recommended mon	obloc tail					
550 - 650 - 750 : 160	XXS 850:180	XXS	950 - 1050 : 200	XXS		
550 77237-0151	650 77237-0152	750 77237	-0153 850 772	237-0154 95	50 77237-0155	1050 77237-0156

NEW SIZES EAGLE HM CARBON

Downwind - Speed

(Key points)

ASPECT RATIO 9.5

- Remarkable speed and downwind performances
- Unrivaled time above the waterThin and optimized design for minimal drag

MONOBLOC STRUCTURE

TITAN CONNECTION

PRE PREG TECHNOLOGY

 $\widehat{}$

 \mathbb{N}

 \mathbb{P}

Glide	Maneuverabi	ility	Pumping	Lov	w end	Speed	
	new —					new	
Area (cm²)	1290	1090	990	890	790	690	
Span (cm)	110,5	102	97	92.5	86.5	82	
Aspect ratio	9.5	9.5	9.5	9.6	9.5	9.7	
Weight (kg)	1.58	1.48	1.31	1,23	1.10	0.92	
Recommended fus	selage		Recomme	nded stab		Recommended n	nonobloc tail
790: 890-990-1090-129	Fuselage carb 00 : Fuselage carb	oon XXXS oon XXS	790-890-9 Stab DW 2	990-1090-129 10 HM	90:	690 : XXXS 190 E	W
690 772	27-0130	790	77227-0	0131	890	77227-01	32
990 772	27-0133	1090	77227-0	0134	1290	77227-01	35

SEVEN SEAS CARBON

Downwind - Glide

(Key points)

ASPECT RATIO 7.5

- Fantastic glide, upwind, and speed abilities
- Makes downwind foiling accessible
 Thin profile and optimized design for minimal drag

Glide	Maneuverability	Pumping	Low end	Speed
Area (cm²)	1400	1200	1000	
Span (cm)	103.5	95	86.5	
Aspect ratio	7.5	7.6	7.5	
Weight (kg)	1.61	1.44	1.35	
Recommended fusel	age		Recommended stab	
1000 - 1200 - 1400:	Fuselage Carbo	on XXXS	1000-1200-1400 : Stab C	250 fence

-

1000 1200

94

77227-0141 77227-0142 1400

PHANTOM - S CARBON

Surf - Freestyle

(Key points)

ASPECT RATIO 6.5

- Great maneuverability Incredible carving, no matter how tight or wide the turns
 Ideal for surf and freestyle
- Speed and glide

Glide	Maneuverability	Pumping	Low end	Speed
Area (cm²)	940	840		740
Span (cm)	78	74		69.5
Aspect ratio	6.5	6.5		6.5
Weight (kg)	1	1		0.8
Recommende	ed fuselage		Recommended stab	
740: 840-940:	Fuselage carbon XXXS Fuselage carbon XXS		Stab C.250 fence	
940	77207-0105 8	40 77217-010	4 740	77217-0103

96

PHANTOM CARBON

Surf - Planing - Freestyle - Freeride

(Key points)

ASPECT RATIO 6

- Speed and glide
 Radical turns and agile carving
 Efficient pumping and planing start
 Incredible freestyle abilities

Glide	Maneuverability	Pumping	Low end	d	Speed	
Area (cm²)	1780	1480	1280	1080	980	
Span (cm) Aspect ratio Weight (kg)	107 6.4 1.9	96 6.2 1.62	87 5.9 1.37	80 5.9 1.20	78 6.2 1.20	
Recommende	ed fuselage		Recommende	ed stab		
980 - 1080 : 1280 : 1480 - 1780 :	Fuselage carbon XXS Fuselage carbon X-short Fuselage carbon short		980 - 1080 : 1280-1480-176	Stab C2 80 Stab C2	250 fence 275 surf	
980 1080 1280	77227-0110 77207-0106 77207-0107		1480 1780		77207-0108 77207-0109	

GRAVITY CARBON

Planing -Freeride

(Key points)

ASPECT RATIO 5.0

- Accessible and straightforward foil
- Smooth and early take-off
 Stability, speed control, and lift
- Reliable and efficient in light conditions

Glide	Maneuverability	Pumping	Low end	Speed
Area (cm²)	2200		1800	
Span (cm)	110		90	
Aspect ratio	5.5		4.6	
Weight (kg)	2.15		1.95	
Recommended fue	selage		Recommended stab	
Fuselage carbon m	nirage		Stab C.275 surf	

77207-0114

1800

ESCAPE HM CARBON

Speed - Carving

Key points

ASPECT RATIO 6

- Amazing glide and speed
 Control at high speed
 Unmatched rigidity
 Full Monobloc Carbon Construction

NEW SIZE

Take off	Stability		Carving	Performance
			new	
Area (cm2)	630	530	430	
Span (cm)	64	58	58	
Aspect Ratio	6.5	6.3	7.8	
Weight (kg)	1.06	1	0.77	
Recommended fusela	ge		Recommended stab	
-			-	
Plane				
430 77237	-0800 530	77227.	-0801 630	77227-0802
Available	April 2024			

GRAVITY FCT

Planing - Freeride

(Key points)

ASPECT RATIO 5.0

- Accessible, forgiving, reliable
 Smooth and early take-off at slow speeds
 Stability and lift
 Great speed control

Glide	Maneuverability	Pumping	Low end	Speed
Area (cm²) Span (cm) Aspect ratio Weight (kg)	2200 110 5.5 2.2		1800 95 5 1.7	
Recommended fus	selage		Recommended stab	
Alu Fuselage 74 su	rf		Stab IC6 300	

77227-0802

1800

PHANTOM FCT

Surf - Planing - Freeride

Key points

Aspect Ratio 6.0

- Great for surf and freeride
 Quick and easy planing
 Pumping machine

- Nimble and maneuverable

Glide	Maneuverability	Pumping	Low end	Speed
_				
Area (cm²) Span (cm) Aspect ratio Weight (kg)	1680 104 6.4 1.6	1480 96 6.2 1.4		1280 87 5.9 1.2
Recommended fus	selage	F	Recommended stab)
Alu Fuselage 74 su	rf		Stab R.275 surf	
1680 77:	217-0125 1280	77217-0122	1480	77217-0123

STAB IC6 300

6	INJECTED
	CARBON

Area (cm²)	Span (СМ)
300	42
Aspect ratio	KG
5.9	0.23

77207-0301

STAB R275 SURF

Span (CM)
38
KG
0.17

STAB C200 CARVING HM

Area (cm²)	Span (CM)
200	37
Aspect ratio	KG
6.8	0.115

77227-0313

STAB C195 SURF

STAB C250 FENCE HM

111

77227-0312

Area (cm²)	Span (CM)
210	43
Aspect ratio	KG
8.8	0.13

77227-0311

Area (cm²) 250	Span (CM) 39
Aspect ratio	KG 0.18

STAB C275 SURF

Area (cm²)	Span (CM)
275	38
Aspect ratio	KG
5.3	0.2

MONOBLOC TAIL 200 XXS PUMPING

Pumping

NEW

MONOBLOC TAIL XXS 200 CARVING

Carving

HM

HM

Area (cm²)

Aspect ratio

200

7.6

Span (CM)

39

KG

TBC

77247-0361

Area (cm²)	Span (CM)
200	37
Aspect ratio	KG
6.9	0.07
0.0	0.27

77237-0323

MONOBLOC TAIL XXXS 180 CARVING

Carving

115

MONOBLOC TAIL XXXS 160 CARVING

Carving

77237-0311

MONOBLOC XXXS 190 DW

Area (cm²)	Span (CM)	
190	41	

Aspect ratio 8.8

KG 0.26

77237-0332

Area (cm²) Span (CM) 35 180 Aspect ratio KG

6.8

0.24

117

116

FUSELAGE CARBON X-SHORT

G	Area (cm²)	KG
).18	33	0.18

77207-0207

Area (cm²) 74

KG 0.97

CARBON MAST 16

(Key points)

- 16mm profile
- High rigidity for a more direct feel
- Full Monobloc construction
- Immediate feedback and connection

Delivered with cover

HM CARBON MAST 14

(Key points)

- Ultra-thin 14mm profile
- $\scriptstyle \bullet \, Full \, Monobloc \, construction$
- High Modulus Carbon layup
- High performance
- Increased rigidity

Delivered with cover

MCARBON HMC
IVIAOT 14 IVIA
80 CM 85
77237-0711 772

77237-0701

77237-0702

PRE PREG TECHNOLOGY

CARBON AST 14 5 CM

HM CARBON MAST 14 95 CM HM CARBON MAST 14 105 CM

37-0712

77237-0713

ALU MASTS

TOP AND BOTTOM PARTS

Mast top plate	Mast top tuttle	Mast top deep KF	Mast top KF KG	Titan mast foot KG
0.43 77207-0401	0.46	0.29	0.42 77207-0402	0.16 77207-0200
ADAPTERS				
Cille	- Inc			

77207-0502

eep tuttle plate adapter	FCD mast foot adapter	4-PT mount foil adapter
G	KG	KG
.63	0.26	0.60
77207-0503	77207-0504	77227-0505

V-STRAPS FOILBOARD

Equipped with

x3M6screws

77228-8001

x3 Self tapping screws

77228-8002

SURF STRAPS

Equipped with

x3 Self tapping screws

F-ONE SAS

ZAC DE LA MÉDITERRANÉE 175, ROUTE DE LA FOIRE 34470 PÉROLS - FRANCE TEL. +33 (0) 4 67 99 51 16 FAX. +33 (0) 4 67 99 61 93

F-one

A FOIRE WWW.F-ONE.WORLD